About

Our research group mainly studies the metabolism and physiological functions of growth regulators, polyamines, and phenolic compounds in plants. We investigate the role of these biologically active compounds in plant development and in the response of plants to abiotic stresses.

In our experiments, we use diverse plant systems from whole plants to cell cultures. Our research is primarily focused on the somatic embryogenesis of conifers. Within this topic, we study the regulation of somatic embryo development, the role of phytohormones in somatic embryogenesis, and the effects of abiotic stresses on somatic embryos. We also deal with the in vitro propagation of medicinal cannabis. In particular, we investigate the effect of phytohormones (auxins and cytokinins) added to the culture medium on the process of organogenesis from segments of cannabis plants grown from seeds in vitro​​​​​.

We use a wide array of approaches:

  • Microscopy – light, confocal, and electron microscopy, enhanced by advanced computer image analysis

  • Biochemical methods – studies of activities of enzymes involved in the metabolism of biologically active compounds (e.g. radiometry)

  • Molecular biology methods – specific gene expressions, and transformation of tissue cultures

  • Analytical methods – qualitative and quantitative determination of biologically active compounds by gas- and liquid chromatography in tandem with mass spectroscopic detection (cooperation with the IEB Laboratory of Growth Regulators and Laboratory of Hormonal Regulations in Plants).

Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis

Submitted by Kateřina Eliášová on Tue, 08/21/2018 - 13:24

Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs. Most of the mechanisms and hormonal functions in the SE of conifers have not yet been described.

Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii (Mirb.)

Submitted by Kateřina Eliášová on Tue, 08/21/2018 - 11:54

This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the line´s embryogenic status.

Approaches we apply to study Norway spruce somatic embryogenesis

Submitted by Lucie Fischerová on Tue, 05/30/2023 - 11:31

Our expertise cover methods of anatomy, histochemical detections, and indirect immunofluorescence, determination of the content of plant hormones, and analysis of gene expression. Newly we are also implementing methods of in-vitro virus detection. To control the developmental processes of in-vitro cultures, we use a broad spectrum of newly synthesized bioactive molecules as well as modulators of plant hormone metabolism and perception (e.g. anti-auxins, anti-gibberellins, cytokinin derivatives).

Polyamine metabolism after induction of autophagy in tobacco BY2 cell culture

Submitted by Kateřina Eliášová on Thu, 10/13/2022 - 11:37

Polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) are ubiquitous, small aliphatic polycations found in eukaryotic organisms, which regulate vital developmental and physiological events. They play an important role in diverse plant growth and developmental processes and adaptation to environmental stresses. Among other functions, spermidine stimulates the process of autophagy across species including yeast, animals, and even humans.

Polyamine metabolism and autophagy in plants

Submitted by Kateřina Eliášová on Thu, 10/13/2022 - 11:16

Polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) are ubiquitous, small aliphatic polycations found in eukaryotic organisms, which regulate vital developmental and physiological events. They play an important role in diverse plant growth and developmental processes and adaptation to environmental stresses. Among other functions, spermidine stimulates the process of autophagy across species including yeast, animals, and even humans.