About

Our research group mainly studies the metabolism and physiological functions of growth regulators, polyamines, and phenolic compounds in plants. We investigate the role of these biologically active compounds in plant development and in the response of plants to abiotic stresses.

In our experiments, we use diverse plant systems from whole plants to cell cultures. Our research is primarily focused on the somatic embryogenesis of conifers. Within this topic, we study the regulation of somatic embryo development, the role of phytohormones in somatic embryogenesis, and the effects of abiotic stresses on somatic embryos. We also deal with the in vitro propagation of medicinal cannabis. In particular, we investigate the effect of phytohormones (auxins and cytokinins) added to the culture medium on the process of organogenesis from segments of cannabis plants grown from seeds in vitro​​​​​.

We use a wide array of approaches:

  • Microscopy – light, confocal, and electron microscopy, enhanced by advanced computer image analysis

  • Biochemical methods – studies of activities of enzymes involved in the metabolism of biologically active compounds (e.g. radiometry)

  • Molecular biology methods – specific gene expressions, and transformation of tissue cultures

  • Analytical methods – qualitative and quantitative determination of biologically active compounds by gas- and liquid chromatography in tandem with mass spectroscopic detection (cooperation with the IEB Laboratory of Growth Regulators and Laboratory of Hormonal Regulations in Plants).

Quantification of histochemical detection of polyphenolic compounds in somatic embryos of Norway spruce

Submitted by Kateřina Eliášová on Wed, 02/27/2019 - 16:54

Under standard cultivation conditions, Norway spruce somatic embryos (SEs) accumulate polyphenolic compounds mostly in the root cap. In response to UV-B, the accumulation of polyphenolics increases in protodermal cells and subprotodermal cortical cells and idioblasts in hypocotyl and cotyledons where they can attenuate UV-B stress. To quantify polyphenolic compounds accumulated in somatic embryos on the histological level resin sections were prepared, stained with Toluidine Blue.

Antioxidants (phenolic acids and carotenoids) in selected apple varieties - harvested and stored

Submitted by Kateřina Eliášová on Wed, 02/27/2019 - 16:26

The aim of this work was to determine the concentration of selected carotenoids (neoxanthin, violaxanthin, antheraxanthin, lutein, zeaxanthin and ß-carotene) and phenolic acids in selected scab resistant and powdery mildew tolerant apple varieties originating from the Station of apple breeding of the IEB. We investigated three different apple varieties - Luna (yellow), Red Topaz (red) and Karneval (streaked) for their antioxidant contents in peel and flesh immediately after the harvest and after 7 months of storage.

The effect of different air humidity during desiccation on the development of Norway spruce somatic embryos

Submitted by Lucie Fischerová on Fri, 09/21/2018 - 12:38

The objective of the study was to follow morphological, selected biochemical and transcriptional characteristics induced by various air humidity during desiccation of Norway spruce somatic embryos. The level of free polyamines lowered, higher forms of polyamines were favoured. Expression profiles of monitored genes were variously influenced by different relative air humidity. Our data proved, that desiccation of somatic embryos is metabolically active process highly affected by relative air humidity.