About

Our research group is mainly involved in the studies of the metabolism and physiological functions of growth regulators, polyamines and phenolic compounds in plants. We investigate the role of these biologically active compounds in plant development and in the response of plants to abiotic stresses.

In our experiments we use the diverse plant systems from the whole plants to the cell cultures. Our research is primarily focused on somatic embryogenesis of conifers. In the scope of this theme we study the regulation of somatic embryo development, the role of phytohormones in somatic embryogenesis and the effects of abiotic stresses on somatic embryos.

We use a wide array of approaches:

  • Microscopy – light, confocal and electron microscopy, enhanced by advanced computer image analysis

  • Biochemical methods – studies of activities of enzymes involved in metabolism of biologically active compounds (e.g. radiometry)

  • Molecular biology methods – specific gene expressions, and transformation of tissue cultures

  • Analytical methods – qualitative and quantitative determination of biologically active compounds by gas- and liquid chromatography in tandem with mass spectroscopic detection (cooperation with the IEB Laboratory of mass spectrometry).

The humidity level matters during the desiccation of Norway spruce somatic embryos

Submitted by Kateřina Eliášová on Fri, 07/29/2022 - 09:57

In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95% and 90% had a negative effect on the subsequent embryo development.

The transcriptomic (RNA-Sequencing) datasets collected in the course of floral induction in Chenopodium ficifolium 459

Submitted by Kateřina Eliášová on Wed, 07/20/2022 - 14:09

The transition from vegetative growth to reproduction is an essential commitment in plant life. It is triggered by environmental cues (day length, temperature, nutrients) and regulated by the very complex signaling gene network and by phytohormones. The control of flowering is well understood in Arabidopsis thaliana and in some crops, much less is known about the other angiosperms.

The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459

Submitted by Kateřina Eliášová on Fri, 04/08/2022 - 11:59

The survival and adaptation of angiosperms depend on the proper timing of flowering. The weedy species Chenopodium ficifolium serves as a useful diploid model for comparing the transition to flowering with the important tetraploid crop Chenopodium quinoa due to the close phylogenetic relationship. The detailed transcriptomic and hormonomic study of the floral induction was performed in the short-day accession C. ficifolium 459. The plants grew more rapidly under long days but flowered later than under short days.

Desiccation as a post-maturation treatment helps complete maturation of Norway spruce somatic embryos: carbohydrates, phytohormones and proteomic status

Submitted by Kateřina Eliášová on Mon, 02/14/2022 - 11:30

Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase.

Carotenoids and phenolic acids during ripening, harvest and storage in selected scab-resistent and mildew-tolerant apple cultivars

Submitted by Kateřina Eliášová on Fri, 03/05/2021 - 14:15

The aim of this study was to characterise the changes in concentration and composition of antioxidants during ripening, harvest and after 3 and 6 months of storage in three commercially successful scab-resistant and powdery mildew-tolerant apple cultivars selected in the Institute of Experimental Botany. The detailed description of free and glycosylated phenolic acid profiles and content of 6 selected carotenoids - neoxanthin, violaxanthin, antheraxanthin, lutein, zeaxanthin and ß-carotene will serve for outcomes of major characteristics of these apple cultivars.